Impact Jetting and the Origin of Ordinary Chondrites

Yasuhiro Hasegawa

(Jet Propulsion Laboratory, California Institute of Technology)

JPL: Neal Turner, Joseph Masiero CfCA/NAOJ: Shigeru Wakita, Yuji Matsumoto, Shoichi Oshino

Copyright 2017. All rights reserved.

Chondrules: the primitive material formed in the Solar Nebula (disk)

abundant in chondrites (up to 80 % by volume)

~Imm sized spherical particles formed as molten droplets of silicate (T ~ I800K)

the cooling rate is
~ 10 - 1000 K per hour
(the nebular gas is needed)

kept forming for 3-5 Myr after CAI formation began, which is 4.567 Gyr ago

cf) Mars formed at ~2 Myr after CAI formation

New information from lab experiments : magnetic fields in the nebula (disk)

Fu et al 2014

Semarkona meteorite : primitive, ordinary chondrite

Both thermoremanent
magnetization & its direction
=> olivine-bearing chondrules
were magnetized
in the solar nebula

B-fields in the solar nebula were ~ 50 - 540 mG => Level of turbulence in the nebula can be estimated!!

Abundance

Chondrule Formation & Accretion

Timescale

B-fields

Abundance

Chondrule Formation

& Accretion

Chondrule Formation

= Impact Jetting

Timescale

= Pebble Accretion B-fields

Key idea: impact jetting

e.g., Johnson et al 2015

A planetesimal with r = 5km collides with a planetesimal or a protoplanet

Such ejected materials may be a progenitor of chondrules

Total ejected mass is about 1% of impactors' mass when v > 2.5 km/s

Lots of collisions occur when protoplanets form

Hasegawa et al 2016a

Protoplanets form via runaway/oligarchic growth

Impact velocity of 2.5 km/s is achieved in the oligarchic pha

Chondrule-forming collisions occur at the hatched region

The total chondrule abundance is 1 % of the protoplanet mass

MMSN = the Minimum Mass of the Solar Nebula

Lots of collisions occur when protoplanets form

Hasegawa et al 2016a

Protoplanets form via

Both the resulting abundance and the formation timescale of chondrules seem reasonable!!

(Note that the thermal history of chondrules is also probably fine)

Chondrule-forming collisions occur at the hatched region

The total chondrule abundance is 1 % of the protoplanet mass

MMSN = the Minimum Mass of the Solar Nebula

Abundance

Chondrule Formation

& Accretion

Chondrule Formation

= Impact Jetting

Timescale

= Pebble Accretion B-fields

Lab results (magnetic fields) come into play!!!

Lab results (magnetic fields) come into play!!!

MagnetoRotational Instability (MRI) can operate

Lab results (magnetic fields) come into play!!!

h depends on level of turbulence, so the B-field strength

MagnetoRotational Instability (MRI) can operate

No chondrule formation due to a low disk mass

A large number of chondrules form in massive disks

No chondrule formation due to a low disk mass

A large number of chondrules form in massive disks

A very strong magnetic field is needed for chondrules to have the same height as planetesimals

Planetesimals can reside in the chondrule sea, but no chondrules indeed

All the currently available meteorite data can be satisfied when the disk mass is < 5 MMSN the planetesimal mass is < $10^{24}~\rm g$ Hasegawa et al 2016b

Our model needs a first generation of planetesimals that trigger impact jetting and serve as parent bodies to accrete chondrules

Hasegawa et al 2016b

Planetesimal mass

Abundance

Chondrule Formation

& Accretion

Chondrule Formation

= Impact Jetting

Timescale

Chondrule Accretion

= Pebble Accretion B-fields

Planetesimal Formation & Origins of Asteroids

Scenario I: Chondrule accretion

Scenario 2: Chondrule accumulation

We will identify formation mechanism(s) of planetesimals

Applications to exoplanetary systems: debris disks

Summary

Hasegawa et al 2016a, ApJ, 816, 9 Hasegawa et al 2016b, ApJ, 820, L12 Wakita et al 2017, ApJ, 834, 125 Matsumoto et al 2017, ApJ, 837, 103

- Primitive meteorites contain fossil records of the solar system
- Coupling of impact jetting with subsequent chondrule accretion is a promising scenario to account for the currently available meteorite data
- all the requirements can be met when the disk mass is < about 5 MMSN and the planetesimal mass is < about $10^{24}~\rm g$
- Our model implies that only primordial asteroids that were originally smaller than 500 km in radius may have a chondrulerich surface layer (~ 0.3 km)!!
- The upper limit of the planetesimal mass is comparable to that of Vesta/Ceres, and current observations/missions may provide an invaluable opportunity to verify our scenario!!